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Abstract 1 

Purpose: To evaluate the feasibility and impact of using a novel advanced PET 2 
auto-segmentation method in Head and Neck (H&N) radiotherapy treatment (RT) 3 
planning. 4 

Methods: ATLAAS, Automatic decision Tree-based Learning Algorithm for 5 
Advanced Segmentation, previously developed and validated on pre-clinical data, 6 
was applied to 18F-FDG-PET/CT scans of 20 H&N patients undergoing Intensity 7 
Modulated Radiation Therapy. Primary Gross Tumour Volumes (GTVs) manually 8 
delineated on CT/MRI scans (GTVpCT/MRI), together with ATLAAS-generated 9 
contours (GTVpATLAAS) were used to derive the RT planning GTV (GTVpfinal). ATLAAS 10 
outlines were compared to CT/MRI and final GTVs qualitatively and quantitatively 11 
using a conformity metric.  12 

Results: The ATLAAS contours were found to be reliable and useful. The volume of 13 
GTVpATLAAS was smaller than GTVpCT/MRI in 70% of the cases, with an average 14 
conformity index of 0.70. The information provided by ATLAAS was used to grow 15 
the GTVpCT/MRI in 10 cases (up to 10.6 mL) and to shrink the GTVpCT/MRI in 7 cases 16 
(up to 12.3 mL). ATLAAS provided complementary information to CT/MRI and 17 
GTVpATLAAS contributed to up to 33% of the final GTV volume across the patient 18 
cohort.  19 

Conclusions: ATLAAS can deliver operator independent PET segmentation to 20 
augment clinical outlining using CT and MRI and could have utility in future clinical 21 
studies.  22 

1. INTRODUCTION 23 

 Positron Emission Tomography (PET) imaging using 18F-Fluorodeoxyglucose 24 

(FDG) plays an increasingly valuable role in Radiotherapy Treatment (RT) planning for a 25 

number of cancers [1]. Loco-regional recurrences have been shown to correlate with PET-26 

avid volumes [2], with studies demonstrating the feasibility and usefulness of PET/CT-27 

guided Intensity Modulated Radiation Therapy (IMRT) [3]. PET/CT-based outlining can 28 

lead to more accurate and reproducible delineation of the Gross Tumour Volume (GTV), 29 

compared to outlining done using CT alone [4]. The PET-based GTV is usually smaller than 30 

the CT based volume [5], [6]. Nishioka et al. showed with 21 oropharyngeal and 31 

nasopharyngeal cancer patients that adjacent normal tissue, particularly parotids, could 32 

be spared in 71% of patients when using PET in the delineation [7], which could 33 

potentially lead to reduced long term morbidity, xerostomia and improved quality of life.  34 

 Although FDG-PET has been adopted in oncology as a key tool in diagnostic 35 

imaging, its use in RT planning has, until now, been limited due to a lack of consensus on 36 
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GTV delineation method. The low resolution of PET coupled with the proximity to the 1 

tumour of other metabolically active structures make the delineation challenging. In 2 

particular in the Head and Neck (H&N), organs such as the pharyngeal muscles, spinal 3 

cord and salivary glands, which should be spared to minimise morbidity and improve 4 

quality of life, can generate additional background FDG uptake.  5 

 Manual PET-based GTV delineation, currently used in most centres, is time 6 

consuming and highly operator-dependent and several studies have shown significant 7 

variations in the GTV delineated by different operators using PET [5], [8]. This has led to 8 

the development and recommended use of various PET automatic segmentation (PET-9 

AS) methods for H&N [9]. However, only a small number of prospective clinical studies 10 

have reported on the use of PET-AS in RT planning [6]. Comparing different studies is 11 

difficult because of the different PET-AS methods used. Basic thresholding methods lack 12 

accuracy and reliability [10], [11], but more advanced PET-AS methods, such as gradient-13 

based, clustering or region-growing approaches are rarely used, and their impact on RT 14 

planning is still unclear. There is a need for studies investigating the feasibility and clinical 15 

benefits of using advanced PET-AS in RT planning.  16 

 This prospective study investigated the use of an optimised PET-AS tool, 17 

developed and validated in house using phantom and clinical PET data [12], [13], for GTV 18 

delineation in the RT planning of 20 oropharyngeal cancer patients. We evaluated the 19 

feasibility and impact of including this method into the RT planning process. 20 

2. METHODS 21 

2.A. THE ATLAAS OPTIMISED SEGMENTATION MODEL  22 

 PET-AS was performed using the Automatic decision Tree-based Learning 23 

Algorithm for Advanced Segmentation (ATLAAS)b method developed at our centre. The 24 

                                                             
b Patent pending No PCT/GB2015/052981 
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ATLAAS model is designed to select the most accurate PET-AS method for a given PET 1 

image. This is achieved using a decision tree supervised machine learning method, 2 

optimised with a training dataset for which the segmentation outcome is known, to 3 

achieve optimal performance for cases in which the outcome is not known. ATLAAS is 4 

described elsewhere [14], and its accuracy was shown for 6 classes of advanced PET-AS 5 

methods used to segment a large range of data including simulated H&N tumours, and 6 

phantom H&N images of complex and realistic tumours obtained with a sub-resolution 7 

printed sandwich phantom [15]. ATLAAS was optimised for H&N data using 65 sub-8 

resolution printed sandwich phantom images. The optimised version included the two 9 

algorithms Adaptive Thresholding method (AT) and Gaussian mixture models Clustering 10 

Method using 5 clusters (GCM5), described in previous work [12]. The best method was 11 

predicted on the basis of TBRpeak defined as the ratio between the tumour peak intensity 12 

value, (mean value in a 1 cm3 sphere centred on the maximum intensity voxel) and the 13 

background intensity (mean intensity in a 1 cm thick extension of a thresholded volume 14 

at 50% of the peak intensity value). An example of the typical steps involved in the 15 

segmentation with ATLAAS is given in Error! Reference source not found.. The ATLAAS 16 

model was implemented for this work in the Computational Environment for 17 

Radiotherapy Research (CERR)[16]. The segmentation accuracy was evaluated by 18 

quantifying the overlap between the segmented and true contour using the Dice 19 

Similarity Coefficient (DSC)  described in other work [17]. 20 

2.B. ACQUISITION OF CLINICAL DATA 21 

The POSITIVE (Optimization of Positron Emission Tomography based Target 22 

Volume Delineation in Head and Neck Radiotherapy) study was set up to test ATLAAS for 23 

the first time in patients undergoing H&N radiotherapy (REC No. 12/WA/0083) and was 24 

carried out at Velindre Cancer Centre (UK). Twenty stage III/IVa-b oropharyngeal cancer 25 

patients were recruited after informed consent to the study. The patients were treated 26 
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with neoadjuvant (induction) chemotherapy followed by radical chemoradiotherapy (66 1 

Gy in 30 fractions over 6 weeks) using IMRT. A planning FDG PET/CT scan was carried 2 

out on a GE Discovery 690 PET/CT scanner before chemotherapy to avoid changes in 3 

tumour volumes prior to outlining. The scans were acquired 90 minutes after FDG 4 

administration in the treatment position with an RT immobilisation shell. The PET was 5 

acquired using 6-8 bed positions of 3 min each. The patient was injected with contrast for 6 

a subsequent CT used in the planning process. The images were reconstructed to 512 x 7 

512 voxels for CT and 256 x 256 voxels for PET, using the algorithm Vue Point FX (24 8 

subsets, 2 iterations, 6.4 mm cut-off) including CT-based attenuation-, scatter- and Time-9 

Of-Flight corrections.  10 

Six weeks on average separated the PET/CT planning scan and the start of RT. The 11 

fit of the immobilisation shells was adjusted if needed after induction chemotherapy and 12 

the patient was re-outlined and re-planned if necessary using the original CT/MRI/PET 13 

scan. Reporting was done by PET specialist radiologists after acquisition of the planning 14 

scans. 15 

2.C. WORKFLOW AND ANALYSIS 16 

MRI scans acquired before recruitment were available for all patients and were 17 

fused to the planning PET-CT scan using the Mutual Information registration algorithm in 18 

the ProSoma software (MedCom GmbG, Darmstadt, Germany).  19 

 Planning scans for the first 10 patients recruited were used to validate the 20 

workflow and verify that ATLAAS provided relevant contours for use. In this subgroup 21 

the primary GTVs were manually outlined by three consultant radiation oncologists, in 22 

discussion with a specialist PET radiologist, on the registered PET/CT, using the software 23 

VelocityAI (Varian Medical Systems, Palo Alto, USA). The resulting GTVpPET/CT contours 24 

were compared with ATLAAS contours in terms of their volume and geometrical overlap, 25 

using the DSC index.  26 
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Once the ATLAAS output was verified, another 10 oropharyngeal cancer patients 1 

were recruited for the study. Manual delineation of the primary GTV was performed by 2 

the consultant radiation oncologists on the fused MRI and CT images in ProSoma 3 

(GTVpCT/MRI). ATLAAS (GTVpATLAAS) contours were then imported into ProSoma where the 4 

final GTV (GTVpfinal) was drawn by the treating clinician using all the available contour 5 

data.  6 

The use of the additional information brought by ATLAAS contours was evaluated 7 

by comparing the different contours (GTVpCT/MRI, GTVpATLAAS, and GTVpfinal) for each 8 

patient, in terms of volume and geometrical overlap using the DSC. In addition, the 9 

clinicians were asked to report any changes made to the GTVpfinal due to the ATLAAS 10 

contour. Lymph nodes, which are well defined on CT/MRI images, were not outlined using 11 

ATLAAS, and are therefore not reported on in this paper.  12 

3. RESULTS 13 

 The patient cohort included 17 men and 3 women with a median age of 63 years. 14 

Ten patients had tonsillar tumours, 8 base of tongue tumours and 2 soft palate tumours. 15 

Two patients needed re-planning after induction chemotherapy. 16 

In the preliminary group of 10 patients, ATLAAS successfully delineated the PET-17 

avid tumour for all patients. The segmentation of the tumour ROI was fully automatic and 18 

took no more than 2 minutes on a dual core 3.1 GHz processor. GTVpATLAAS were smaller 19 

than the manually delineated GTVpPET/CT for 7 out of 10 patients. The mean DSC between 20 

GTVpPET/CT and GTVpATLAAS was 0.82, when 0.7 is considered to be an indicator of good 21 

overlap [18]. On the basis of these results, it was decided that only ATLAAS and CT/MRI 22 

contours would be used for the subsequent 10 patients recruited. 23 

A comparison in terms of volume and conformity between the GTVp delineated 24 

using ATLAAS and both CT/MRI-based and final contours delineated by the investigators 25 
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is presented in Error! Reference source not found.. ATLAAS volumes were smaller than 1 

the corresponding CT/MRI volumes in 7 out of 10 cases, and were within 10% of CT/MRI 2 

volumes in 4 out of 10 cases. The spatial conformity of GTVpATLAAS and GTVpCT/MRI was 3 

0.70 DSC on average. GTVpATLAAS and GTVpfinal were close, with the larger of the two no 4 

bigger than 30% of the smaller, in 6 out of the 10 cases. GTVpfinal volumes were larger than 5 

the GTVpATLAAS in all cases. However, the ATLAAS volumes showed good conformity to the 6 

final contour, with an average DSC of 0.77.  7 

Table 2 reports the details of the global and local changes to the final volume 8 

based on ATLAAS, and outlines the differences between ATLAAS and CT/MRI contours 9 

not taken into account in the final GTV. For instance, the data in the top row of the table 10 

shows that more than 83% of the ATLAAS volume was included in the final GTV for all 11 

patients, and 100% of the ATLAAS volume was included in the final GTV in 4 cases. The 12 

second row reports the proportion of the CT/MRI volume modified on the basis of the 13 

ATLAAS outline. This value ranged from 6.5% to 33%. This modification could include 14 

both additional extension of the volume when the ATLAAS contour was outside the 15 

GTVpCT/MRI or local reduction of the extension in cases where the inverse was true. This is 16 

detailed in rows 3-5 as illustrated under the table. 17 

Figure 2 illustrates specific differences found between GTVpCT/MRI, GTVpATLAAS and 18 

GTVpfinal overlaid on the corresponding CT/PET scan, for seven clinical cases of interest. 19 

3.A. EXTENDING THE GTV BASED ON ATLAAS 20 

 As reported in the third row of Table 2, GTVpCT/MRI was locally extended based on 21 

the information provided by ATLAAS (cf. Figure 2a) for all clinical cases, with up to 10 mL 22 

added to make the final volume. Visual examination and reporting by the clinicians 23 

showed that this was done when additional disease extension was detected by ATLAAS, 24 

and confirmed by clinical or CT/MRI findings. This included larger superior-inferior 25 
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disease extension (for five patients and up to 1.1 cm as reported in Figure 2b), and disease 1 

extension identified across the midline (cf. Figure 2c).  2 

3.B. REDUCING THE GTV EXTENT BASED ON ATLAAS 3 

 As shown in the fourth row of Error! Reference source not found., local 4 

reduction of the extension (on one or more transverse slices) of the CT/MRI volume based 5 

on ATLAAS was observed for 7 patients, and was more than 2 mL for two patients. The 6 

extent of the contours was locally reduced when the smaller disease extension indicated 7 

by ATLAAS was in agreement with the clinical findings and the CT or the MRI information. 8 

The extension was also reduced in the superior-inferior direction for two patients (1.5 cm 9 

for patient No 16). In cases of largely conflicting information between image modalities, 10 

the CT/MRI contour extension was reduced down to a compromise following the edge of 11 

the anatomical structures, as depicted in Figure 2d. 12 

3.C. ATLAAS INFORMATION DISCARDED 13 

 Differences between GTVpCT/MRI and GTVpATLAAS were not considered in the final 14 

GTV when they included: 15 

a) bone (0.1 mL for patient No 11, cf. Figure 2e),  16 

b) air (for 5 patients, up to 6.6 mL for patient No 12, cf. Figure 2f) 17 

c) different superior-inferior disease extension in GTVpATLAAS which was not confirmed 18 

by anatomical imaging or clinical examinations (for 6 patients, up to 6.4 mL for 19 

patient No 13, cf. Figure 2g)  20 

d) different transverse disease extension unconfirmed by anatomical imaging or clinical 21 

examinations (cf. some regions in Figure 2f) 22 

In these cases, the differences between GTVpATLAAS and GTVpfinal (expressed in mL), is 23 

given in row 5 of Table 2 and includes both over and under contouring. 24 
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4.  DISCUSSION 1 

 In this study, we investigated the clinical feasibility of using the novel ATLAAS 2 

optimised segmentation model in 20 H&N cancer patients undergoing radical 3 

chemoradiotherapy. ATLAAS was applied for the first time to 20 prospectively recruited 4 

patients in a clinical trial with a strict scanning protocol, which involved expert PET 5 

radiologist and H&N radiation oncologists. It was prospectively used, in combination with 6 

manual CT/MRI data, to derive the final GTV for use in RT planning. To the best of our 7 

knowledge, advanced PET-AS methods (beyond simple thresholding) have only been 8 

included as part of RT treatment planning in two studies in H&N cancer [19], [20], which 9 

were based on the same segmentation method. In this work, we additionally evaluated 10 

the impact of using the PET-AS contour on local modifications of the planning contour. 11 

ATLAAS had previously shown accuracy and robustness on phantom and simulated 12 

data for the evaluation of H&N PET scans [14]. Evaluation on images from the 10 first 13 

patients involved in this study showed that ATLAAS provided PET-avid GTVs for all 14 

patients with a high degree of similarity to PET GTVs manually delineated by experts. In 15 

addition, the segmentation was fully automatic and therefore reproducible, and lasted no 16 

more than 2 minutes per patient. The use of ATLAAS instead of manual PET/CT outlining 17 

for the 10 subsequent patients in this study, considerably reduced the clinicians’ 18 

workload and removed inter-observer variability.  We have shown that ATLAAS not only 19 

could segment the PET-avid areas of disease reliably in patients compared to manual PET 20 

outlining but that it could also add valuable information to guide clinical delineation of 21 

the primary GTV. 22 

The ATLAAS contours were smaller than the CT/MRI contours in most cases, which is 23 

in agreement with findings from other studies where threshold-based delineation was 24 

used for H&N patients [21]. Furthermore, the ATLAAS derived contours provided 25 

additional information to anatomical contours manually drawn on CT and MRI. This is in 26 
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line with the study by Newbold et al. in 19 H&N patients, where threshold-based 1 

delineation was used to derive the PET-based GTV [22]. In our study, we found that 2 

additional information from ATLAAS included (a) identification of superior-inferior 3 

disease extension , and extension across the midline not seen on CT (e.g. Figure 2c), and 4 

(b) other disease extension boundaries differing from anatomical data. The information 5 

provided by ATLAAS was used in all patients and this shows the confidence of the 6 

clinicians in the usefulness of our segmentation method for RT planning at our centre. 7 

The clinician’s judgment and expertise and the additional clinical data available 8 

(endoscopy or clinical examination results) remained paramount in the process. 9 

Nevertheless ATLAAS was very useful (a) in confirming the GTV outline when this was 10 

close to the CT/MRI based contour, and (b) as a delineation guide when in disagreement 11 

with CT/MRI based contours, due for instance to different patient positioning and/or 12 

poor image registration. 13 

We have methodically investigated the impact of ATLAAS on the final GTV for our 14 

cohort. We found that although ATLAAS led to reducing the extension in some areas of 15 

the GTVpCT/MRI for 7 patients, the PET information led to a globally smaller final GTV for 16 

only 1 patient. This is in line with the findings of Ciernik et al. for a cohort of 12 H&N 17 

patients [5], and Paulino et al. for 40 H&N patients [23], both using manual PET 18 

segmentation. This confirms the suggestion that clinicians may not be prepared yet to 19 

reduce the GTV volume based on PET. Indeed, although some studies have shown that 20 

PET-AS contours can accurately identify the whole tumour burden in laryngeal cancer [4], 21 

[24], it may be more useful for defining the metabolically active tumour region, especially 22 

for tumours which can be highly heterogeneous such as in the H&N [25]. This is in line 23 

with the suggestion of considering the Biological Tumor Volume as defined by Ling et al. 24 

[26], which can be used for dose escalation [27], [28] to increase the dose to the tumour 25 

while sparing the surrounding tissue. The ATLAAS model could be useful for determining, 26 

with a consistent and operator independent approach, highly metabolically active areas 27 
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of the tumour requiring a radiation boost and it could therefore be extremely useful for 1 

treatment plan adaptation. Correlation with additional information and clinical input 2 

would still be required in finalising the volumes for dose escalation.  3 

Differences between the GTVpfinal and GTVpATLAAS volumes were in the range [0.6, 45] 4 

mL (cf. row 5 of Table 2).  CT/MRI based outlining was preferred when: (a) no PET signal 5 

was found in abnormal mucosa (Figure 2g), (b) high PET uptake was observed in and 6 

around air cavities and/or bone (Figure 2c and 2h) due to signal spill-out or inflammation. 7 

Spill-out effects can be corrected with CT-based thresholding, whereas unconfirmed soft 8 

tissue extensions of the disease, which represent a large part of the differences observed 9 

between CT/MRI and PET contours (cf. rows 5c and 5d of Table 2), are inherent to the 10 

difference between modalities.   11 

One of the limitations of this study is that we could not carry out a full comparison 12 

between GTVpATLAAS and the PET GTV outlined manually without reference to anatomical 13 

data from the CT scan. In this case the correlation between manual and GTVpATLAAS could 14 

have been greater because based on the same underlying data. In addition, this work was 15 

carried out as a single centre study. Both limitations shall be addressed in the design of a 16 

forthcoming multicentre clinical trial. 17 

 18 

5. CONCLUSIONS 19 

The ATLAAS optimised segmentation model based on the decision tree machine 20 

learning method is a novel, fast and operator independent tool for tumour delineation in 21 

radiotherapy treatment planning of Head and Neck cancer. ATLAAS can potentially be 22 

applied to any tumour site and tumour type and holds promise for future multi-centre 23 

clinical studies investigating the use of PET in radiotherapy outlining, prior to starting 24 
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treatment and also for adaptive re-planning of residual metabolically active disease 1 

during treatment. 2 
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Figure 1.Example of steps in the decision tree method implemented in the ATLAAS segmentation 3 

model.  4 

  5 
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Figure 2. GTVCT/MRI, GTVpATLAAS, and GTVpfinal compared for 7 clinical cases. 3 
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 1 

Table 1. GTVp volumes and DSC index for manual and ATLAAS contours. 2 

      Patient No     

  11 12 13 14 15 16 17 18 19 20 Mean 

Final volume (mL) 33.1 45.9 21.5 38.2 27.5 54.7 33.1 19.0 33.8 17.4 - 

CT/MRI volume (mL) 27.1 40.6 19.8 32.8 26.9 60.8 28.5 16.6 31.3 15.6 - 

ATLAAS volume (mL) 27.3 41.9 7.8 26.2 15.6 52.5 29.0 16.1 23.7 8.6 - 

DSC(ATLAAS vs 

CT/MRI) 
0.77 0.76 0.44 0.75 0.67 0.82 0.74 0.74 0.76 0.51 0.70 

DSC(ATLAAS vs final) 0.90 0.77 0.53 0.81 0.68 0.97 0.84 0.92 0.83 0.58 0.77 

  3 

  4 
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Table 2. Quantification of the changes to the final volume (growth and shrinkage) based on the ATLAAS outlines, and differences between ATLAAS and CT/MRI not taken 1 

into account in the final GTV. Calculations corresponding to the different rows  are schematically described under the table. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
 13 
 14 
 15 
 16 
 17 

  Patient No 

 11 12 13 14 15 16 17 18 19 20 

1 % ATLAAS included in GTVpfinal  99.6 83.2 100 100 94.0 99.1 91.8 100 100 88.0 
2 Modifications to GTVpCT/MRI (% GTVpCT/MRI) 25.1 32.0 7.9 17.0 6.5 33.1 16.3 28.4 7.7 9.8 
3 GTVpCT/MRI grown based on ATLAAS  (mL) 8.3 10.6 1.7 5.4 1.7 5.8 4.9 3.9 2.6 1.5 
3a of which superior-inferior extent 0.9 - - 0.7 0.3 - - 0.6 - 1.1 
4 GTVpCT/MRI shrunk based on ATLAAS (mL) - 4.1 - 1.1 0.1 12.3 0.5 1.5 - 0.2 
4a of which superior-inferior extent - 0.9 - - - 1.5 - - - - 

5 Difference between GTVpfinal and ATLAAS (mL), of 

which: 
6.9 20.0 12.7 12.0 45.1 0.6 11.5 3.4 10.0 11.1 

5a Bone regions (%)  2 3 0 0 0 0 0 0 0 0 

5b Air cavities or vicinity (%) 0 37 6 0 9 0 10 12 0 7 

5c Superior-inferior extent (%) 14 0 30 0 13 0 19 1 4 30 

5d Transverse soft tissue extent (%) 84 60 64 100 78 100 71 87 96 63 

 

1. % ATLAAS included in 
GTVpfinal

2.  Modifications to 
GTVpCT/MRI

3. GTVpCT/MRI extension 
locally increased based 

on ATLAAS (mL)

4. GTVpCT/MRI extension 
locally reduced based on 

ATLAAS (mL)

5. Difference between 
GTVpfinal and ATLAAS (mL)

GTVpCT/MRI GTVpfinalGTVpATLAAS

  Patient No 

 11 12 13 14 15 16 17 18 19 20 

1 % ATLAAS included in GTVpfinal  99.6 83.2 100 100 94.0 99.1 91.8 100 100 88.0 
2 Modifications to GTVpCT/MRI (% 

GTVpCT/MRI) 
25.1 32.0 7.9 17.0 6.5 33.1 16.3 28.4 7.7 9.8 

3 GTVpCT/MRI extension locally increased 
based on ATLAAS  (mL) 

8.3 10.6 1.7 5.4 1.7 5.8 4.9 3.9 2.6 1.5 

3a of which superior-inferior extent 0.9 - - 0.7 0.3 - - 0.6 - 1.1 
4 GTVpCT/MRI extension locally reduced  

based on ATLAAS (mL) 
- 4.1 - 1.1 0.1 12.3 0.5 1.5 - 0.2 

4a of which superior-inferior extent - 0.9 - - - 1.5 - - - - 
5 Difference between GTVpfinal and ATLAAS 

(mL), of which: 6.9 20.0 12.7 12.0 45.1 0.6 11.5 3.4 10.0 11.1 
5a Bone regions (%)  2 3 0 0 0 0 0 0 0 0 
5b Air cavities or vicinity (%) 0 37 6 0 9 0 10 12 0 7 
5c Superior-inferior extent (%) 14 0 30 0 13 0 19 1 4 30 
5d Transverse soft tissue extent (%) 84 60 64 100 78 100 71 87 96 63 
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 2 
 3 

Figure legends: 4 

Figure 1.  Example of steps in the decision tree method implemented in the ATLAAS segmentation model.  5 

Figure 2.  GTVCT/MRI, GTVpATLAAS, and GTVpfinal compared for 7 clinical cases. 6 
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